TR-107 .OFFICE_OF NAVAL RESEARCH NØØØ14-76-C-Ø39Ø Task No. NR 053-608 ECHNICAL REP NMR Study of the Closo-hydridorhodacarborane 3,3-[$(\overset{!}{C_2}\overset{!}{H_5})_3$ P] $^{1}_2$ -3-H-3,1,2-RhC2B9H11(Ia) Prepared in situ from 3,3-(Ph3P)2-3-H-3,1,2-RhC2B9H11(I) C./Kalb, C. W./ Kreimendahl, D. C./ Busby M. F./Hawthorne* Prepared for Publication in Inorganic Chemistry Department of Chemistry / University of California Los Angeles, California 90024 ADA08132 FILE COPY Approved for Public Release; Distribution Unlimited Reproduction in whole or part is permitted for any purpose of the United States Government 072255 AM 80 2 28 024 A 11B NMR Study of the Closo-hydridorhodacarborane 3,3-[(C_2H_5) $_3P$] $_2$ -3-H-3,1,2-RhC $_2B_9H_{11}$ (Ia) Prepared in situ from 3,3-(Ph_3P) $_2$ -3-H-3,1,2-RhC $_2B_9H_{11}$ (I) bу W. C. Kalb, C. W. Kreimendahl, D. C. Busby, and M. F. Hawthorne* Department of Chemistry University of California Los Angeles, California 90024 SUMMARY B(11) A complete assignment of the 11_B NMR spectrum (111.8 MHz) of 3,3- $((C_2^2H_5^2)_3^3P)_2^2$ -3-H-3,1,2-RhC $_2^2B_3^2H_1^2$ (Ia) is proposed on the basis of 11_B NMR data obtained from specifically deuterated derivatives of I, and from 3,3- $(Ph_3^2P)_2^2$ -3-H-9,12- $(Br)_2^2$ -3,1,2-RhC $_2^2B_3^2H_3^2$ and 6-Ph-3,3- $(Ph_3^2P)_2^2$ -3-H-3,1,2-RhC $_2^2B_3^2H_1^2$ in tetra-RhC $_2^2B_3^2H_1^2$. The $(11_B)_1^2$ -NMR of $(21_B)_1^2$ -3-H-3,1,2-RhC -3 ### Introduction The first metallocarborane catalyst for the hydrogenation and isomerization of olefins, $3,3-(Ph_3P)_2-3-H-3,1,2-RhC_2B_9H_{11}(I)$, also catalyzes the exchange of terminal boron-hydrogen bonds for deuterium in the presence of D_2 . These exchanges were found to proceed for a wide variety of carborane and metallocarborane substrates and, during these exchanges, deuteration also occurs at B-H vertices in I. In order to determine the specificity for self deuteration of I the ^{11}B NMR study presented herein was undertaken. Our goal was to completely assign the ^{11}B NMR spectrum of I and relate this information to a mechanism for the B-H/D exchange catalyzed by I and other metallocarboranes. The solid state structure of I has been determined by a single crystal X-ray diffraction study, 4 and found to be that of a regular icosahedron with the rhodium vertex symmetrically bonded to the pentagonal face of the dicarbollide ligand. For reasons discussed below, the 11 B NMR spectrum of I consists of broad, poorly resolved resonances. 1 With the discovery 5 that substitution of triethylphosphine ligands for the triphenylphosphine ligands in I is accompanied by a marked improvement in the 11 B NMR spectrum of the derived complex 3 , 3 -[(2 C₂H₅) 3 P] 2 -3-H-3,1,2-RhC 2 B₉H 1 1 (Ia), it became feasible to attempt an assignment of the spectrum. An assignment of the ${}^{11}B$ NMR spectrum of the $1.2-C_2B_9H_{12}^{1-6}$ ion has been reported by Hawthorne et al 7 and others. 8 The ${}^{11}B$ NMR spectrum of $(C_2B_9H_{11})_2C_0^+$ has been assigned by Todd and co-workers. The present study provides a complete assignment of the ${}^{11}B$ NMR spectrum of Ia. Details of the mechanism for the B-H/D exchange catalyzed by I will be reported at a later date. ### Results and Discussion While 11 B NMR spectroscopy has found widespread application in the chemistry of boron hydrides, metalloboranes and metallocarboranes, the 11 B NMR spectra of metallocarboranes with bulky dissociable ligands have proven somewhat less amenable to analysis. Broad resonances are often observed for these complexes, especially for those which contain two metal-bound triphenylphosphine ligands. It was determined however that substitution of triethylphosphine for triphenylphosphine in I greatly improved the 11 B NMR spectrum of the derived complex. The 111.8 MHz 11 B NMR spectrum of I and 3,3-[($^{C}_{2}$ H₅) 3 P]₂-3-H-3,1,2-RhC₂B₉H₁₁(Ia) in tetrahydrofuran (THF) solution are presented in Figure 1 for comparison. ## Figure 1 The numbering system employed throughout this paper is presented in the right side of Figure 1. 6 This dramatic difference between the 11 B NMR spectra of I and Ia is most probably due to changes in the rate of molecular tumbling for these two species in solution. The longitudinal relaxation times (T_1) are relatively short for boron nuclei due to the quadrupole moment of both 10 B and 11 B. The presence of bulky triphenylphosphine ligands in I apparently increases the molecular correlation time. This should lead to effective quadrupolar relaxation and thus to broad 11 B NMR resonances for I. In contrast, the presence of the less bulky triethylphosphine ligands in complex Ia could afford an increase in the rate of tumbling (corresponding to decrease in the molecular correlation time). This would provide an increase in T_1 , resulting in diminished 11 B NMR linewidths. 10 , 11 The 11B NMR spectrum of Ia in THF solution indicates the presence of a mirror plane (the spectrum contains 5 resonances of relative area 1:1:2:2:3 reading upfield), this is indicative of a higher degree of symmetry for I in solution than is observed for I in the solid state. This increase in symmetry is accounted for by a rapid rotation of the $\{Rh(L)_2(H)\}$ vertex in Ia about the center of the pentagonal face of the dicarbollide ligand. 12 The mirror symmetry indicated for Ia would lead ideally to the observation of six resonances in the ^{11}B NMR spectrum of relative intensity 1:1:1:2:2:2. The presence of the weight three resonance observed for Ia is attributed to coincidental overlap of the resonance for a unique boron (B(6), B(8), or B(10)) with the resonance due to one of the symmetry equivalent pairs (B(4,7), B(5,11), or B(9,12)) (vide infra). It was determined during the course of this study that samples of I in THF solution, when treated with excess triethylphosphine, gave ¹¹B NMR spectra identical to those which are observed for complex Ia in the same solvent. The hydridorhodacarboranes in this study were prepared and characterized as the bis-triphenylphosphine complexes. The ¹¹B NMR spectra reported here are for the bistriethylphosphine complexes prepared in situ. 4,5,6,7,11-D₅-1,2-C₂B₉H₇¹⁻ was prepared by base degradation of 3,4,5,6,7,11-D₆-1,2-C₂B₁₀H₆ according to a literature procedure. ¹³ 6-Ph-C₂B₉H₁₁¹⁻ was prepared analogously from 6-Ph-C₂B₁₀H₁₁. ¹⁴ 9,12-(Br)₂-1,2-C₂B₉H₁₀¹⁻ was prepared by base degradation of 9,12(Br)₂-1,2-C₂B₁₀H₁₀. ¹⁵ All monoanions were isolated as the tetramethylammonium salts and were dried over P_2O_5 in vacuo. μ -4,7,8,9,12-D₆-C₂B₉H₆¹⁻ was prepared from K^+ 1,2-C₂B₉H₁₂¹⁻ in 6M DC1/D₂O (6 days, 25°C). ⁷ The ¹¹B NMR spectrum of this species revealed partial exchange had also occurred at B(5,11); only B(10), and B(6) retained complete coupling to terminal hydrogen, indicating these sites had not undergone exchange. The derivatives of I were prepared from the appropriate $1,2-C_2B_9H_{12}^{1-}$ derivative and $(Ph_3P)_3RhC1$ in refluxing ethanol according to a procedure developed in this laboratory (Equation 1). Typically, the reactions were complete after $$c_2 B_9 H_{12}^{1-} + (Ph_3 P)_3 RhC1 \xrightarrow{c_2 H_5 OH} (Ph_3 P)_2 (H) RhC_2 B_9 H_{11} + Ph_3 P + C1^- (1)$$ 10-15 minutes, at which time the hydridorhodacarboranes were isolated by Schlenk filtration, washed with ethanol and dried in vacuo. No detectable scrambling of the deuterium label was observed in these experiments. This is due to both the short reaction times and the presence of triphenylphosphine (a product of reaction I) which has been shown to effectively inhibit the B-H/D exchange catalyzed by I. 2,3 It is of note that I prepared from bridge deuterated 1,2-C₂B₉H₁₁D¹⁻ was found to contain only Rh-D (v_{Rh-D} at 1520 cm⁻¹) with no trace of Rh-H detectable by IR (Equation 2). This conclusively establishes that the hydride in I results from the oxidative addition of $$\mu$$ -D-1,2- $C_2B_9H_{11}^{1-}$ + $(Ph_3P)_3RhC1 \xrightarrow{C_2H_5OH}$ $(Ph_3P)_2(\underline{D})RhC_2B_9H_{11}$ (2) the bridging hydrogen in $1,2-C_2B_9H_{12}^{1-}$. The 111.8 MHz 11 B NMR spectrum of 4,5,6,7-11- D_5 (Ia) in tetrahydrofuran, prepared in situ from 4,5,6,7,11- D_5 (I) is shown in Figure 2a. Only the resonances at -2.8 ppm, -3.9 ppm and -9.0 ppm exhibit coupling to terminal hydrogens. The resonance of weight two at -9.0 ppm must therefore be due to the symmetry equivalent pair of boron atoms B(9,12). The resonance at -2.8 ppm and -3.9 ppm must be due to B(8), B(10) (indefinite order). The lack of B-H coupling in the weight three resonance at -21.0 ppm indicates this must contain the resonance for the remaining unique boron atom B(6). This assignment is supported by the ¹¹B NMR spectrum of 6-Ph(Ia) prepared in situ from 6-Ph(I) in tetrahydrofuran solution (Figure 2b). Replacement of a phenyl group for hydrogen on boron causes the area 3 resonance at -20.3 ppm to decrease to an area of 2. The resonance due to B(6) is shifted downfield and appears as a singlet at -12.7 ppm. The assignment of B(9,12) is supported by the 11 B NMR spectrum in THF of 9,12(Br) $_2$ (Ia) prepared in situ from 9,12(Br) $_2$ (I) (Figure 2c). The borons due to B(9,12) appear as a singlet at -3.2 ppm. Substitution of Br for terminal hydrogen on boron is generally accompanied by a shift to lower field of the 11 B NMR resonance due to the substituted boron. 16 The resonances which remain unassigned in the spectrum of 9,12(Br) $_2$ (Ia) exhibit chemical shifts nearly identical to those observed for Ia suggesting that the resonance at -9.0 ppm in the spectrum of Ia has moved to lower field in the spectrum of (9,12)(Br) $_2$ (Ia). The 11 B NMR spectrum of Ia in THF prepared <u>in situ</u> from 3,4,7-D $_3$ (I) is shown in Figure 2d. The resonance of area two at -11.0 ppm appears as a singlet and is thus assigned to B(4,7). The resonance due to the remaining symmetry equivalent pairs of borons, B(5,11) must therefore occur at -21.1 ppm. Only the resonances due to B(8), B(10) (which occur at low field) remain to be assigned. The ^{11}B NMR spectrum of 6,10-H₂(Ia) in THF prepared in situ from 6,10-H₂(I) is shown in Figure 2e. Only the resonance at -3.9 retains coupling to terminal hydrogen. The resonance due to B(6) has previously been shown to occur at -21.0 ppm (vide supra) and therefore the resonance at -3.9 ppm is assigned to B(10). The remaining resonance at -2.8 ppm is assigned to B(8) by elimination. It is of interest to compare the present assignment with that of the analogous metallocarborane $(C_2B_9H_{11})_2Co^{-.8}$ The assignments (reading upfield) are for Ia: B(10), B(8), B(9,12), B(4,7), B(6), B(5,11); and for $(C_2B_9H_{11})_2Co^{-}$: B(8), B(10), B(9,12), B(4,7), B(5,11), B(6). All resonances in the ¹¹B NMR of Ia are found at higher field than those observed for $(C_2B_9H_{11})_2Co^{-}$ with the exception of B(6). Overall, however, the two spectra appear quite similar. The different assignment for B(8) and B(10) for two such similar spectra should serve as a caution against assigning ^{11}B NMR resonances by comparison to "similar" species. ### Experimental ### Instrumentation Infrared spectra were recorded on a Perkin-Elmer 137 Spectrometer. ¹¹B NMR (111.8 MHz) were obtained in the Fourier-transform mode on an instrument designed and constructed by Professor F. A. L. Anet of this department. #### Materials All solvents were reagent grade and, except where otherwise noted, were distilled under argon from the appropriate drying agent immediately prior to use. Ethanol (abs.) was saturated with nitrogen but otherwise used without further purification. Tetrahydrofuran and diethyl ether (Mallinckrodt) were dried over alumina and distilled from potassium. $(Ph_3P)_3RhCl$ was prepared from $RhCl_3 \cdot 3H_2O$ (Matthey-Bishop) according to a procedure in the literature. 17 $K^+7,8-C_2B_9H_{12}^-$ was prepared according to the literature 18 and stored in a nitrogen-filled glove-box. DCl (20% in D_2O , 99 + atom % D, Alfa-Ventron) was diluted immediately prior to use with D_2O in a nitrogen-filled glove-bag. # $(CH_3)_4N^+-\mu,4,7-D_3-1,2-C_2B_9H_9^-$ K^{\dagger} 1,2- $C_2B_9H_{12}^{-}$ (1.0 g, 5.8 mmol) was weighed in the dry box into a 100 ml, round bottom flask equipped with a sidearm and stopcock. The flask was sealed with a gas inlet tube equipped with a stopcock, transferred to the bench, and fitted to a nitrogen line. D_2O (1 M in DC1, 15 ml) was syringed into the flask and the flask was shaken to achieve a homogeneous solution. The flask was then sealed under a positive pressure of N_2 . After three days a sample of the solution was obtained with a syringe and transferred to a nitrogen-filled NMR tube. The 11 B NMR of this sample revealed complete deuteration at B(4,7) and the B-H-B bridge. An additional 20 ml of D_2^0 was added to the flask, followed by $(CH_3)_4^NC1$ (0.73 g, 6.7 mmol) in 5 ml of D_2^0 . The precipitate which formed was isolated by Schlenk-filtration, washed with three-l0 ml portions of D_2^0 and dried at 80^0 C over P_2^0 in vacuo. A 11 B NMR of the product was obtained in CH_3^0 CN. ## Preparation of NMR samples of I and derivatives of I <u>Caution</u>: $(C_2H_5)_3P$ is toxic: gloves should be worn and these operations should be performed in an efficient fume hood. The sample of I (15 to 20 mg) was added to a 5 mm NMR tube which was then fitted with a rubber septum and purged with N $_2$ utilizing two syringe needles. After 5 mins, tetrahydrofuran (0.8 ml) was added to the sample with a syringe. Immediately thereafter, (C_2H_5) $_3P$ (0.15 ml) was added with a syringe. The needles were removed and the sample was shaken to dissolve the metallocarborane. 11 8 NMR spectra of the samples so prepared were recorded after a period of 45 mins, to allow for complete phosphine exchange. ### Acknowledgement This research was supported in part by the National Science Foundation (Grant No. CHE77-22910) and the Office of Naval Research. We thank Professor F. A. L. Anet for the use of his NMR facility, and Dr. Dan Donovan for his technical assistance. ### References and Notes - 1. T. E. Paxson and M. F. Hawthorne, J. Am. Chem. Soc., 96, 4674 (1974). - 2. E. L. Hoel and M. F. Hawthorne, <u>J. Am. Chem. Soc</u>., 96, 4676 (1974). - 3. E. L. Hoel, M. Talebinasab-Savari and M. F. Hawthorne, <u>J. Am. Chem. Soc.</u>, 99, 4356 (1977). - 4. G. E. Hardy, K. P. Callahan, C. E. Strouse, and M. F. Hawthorne, <u>Acta Cryst</u>. (1976), <u>B32</u>, 264. - 5. The complex $3,3-[(C_2H_5)_3P]_2-3-H-3,1,2-RhC_2B_9H_{11}$ was first synthesized and completely characterized by R. T. Baker of these laboratories. - 6. For continuity, an older numbering system is used to describe the position of substitution in $7.8-C_2B_9H_{12}^-$ (referred to as $1.2-C_2B_9H_{12}^-$ in this paper). Under this system, the numerical prefix which assigns the position of substitution, is the same for both the $C_2B_9H_{12}^-$ derivatives and the respective derivatives of I. - 7. D. V. Howe, C. J. Jones, R. J. Wiersema, and M. F. Hawthorne, <u>Inorg. Chem.</u>, 10, 2516 (1971). - 8. A. R. Siedle, G. M. Bodner, and L. J. Todd, <u>J. Organomet. Chem.</u>, <u>33</u>, 137 (1971). - 9. S. G. Shore, in "Boron Hydride Chemistry" (E. L. Muetterties, Ed.), p. 95, Academic Press, New York, 1975. - 10. E. D. Becker, "High Resolution NMR", p. 206, Academic Press, New York, 1969. - 11. This explanation has been offered to account for the broad ¹¹B NMR resonances found in metalloboranes which contain bulky aryl phosphines. J. D. Kennedy and J. Staves, Z. Naturforsch., 34b, 808 (1979); and E. L. Muetterties, Rev. Pure Appl. Chem., 29, 585 (1972). - 12. T. B. Marder, R. T. Baker, and J. A. Doi, to be published. - 13. We are grateful to Dr. E. L. Hoel for the sample of $3,4,5,6,7,11-D_6-1,2-C_2B_{10}H_6$ which was prepared from $B_4-5,6,7,8,9,10$ $D_{10}-B_{10}H_4$ (J. A. Dupont and M. F. Hawthorne, J. Am. Chem. Soc., 84, 1804 (1962)) according to the procedure of L. J. Todd, Inorg. Synth., XI, 19 (1968). - 14. M. F. Hawthorne and P. A. Wegner, J. Am. Chem. Soc., 90, 896 (1968). - 15. H. D. Smith, T. Knowles, and H. A. Schroeder, <u>Inorg. Chem.</u>, 4, 107 (1965). - G. R. Eaton and W. N. Lipscomb, "NMR Studies of Boron Hydrides and Related Compounds", p. 407-408, W. A. Benjamin, Inc., New York, 1969. - J. A. Osborn, F. H. Jardine, J. F. Young, and G. Wilkinson, <u>J. Chem. Soc.</u> A, 1711 (1966). - M. F. Hawthorne, D. C. Young, P. M. Garrett, D. A. Owen, S. G. Schwerin, F. N. Tebbe, and P. A. Wegner, <u>J. Am. Chem. Soc.</u>, 90, 862 (1968). Figure 1 111.8 MHz ¹¹B NMR spectra of 3,3-L₂-3-H-3,1,2-RhC₂B₉H₁₁ - a) $L = PPh_3$ (I) - b) $L P(C_2H_5)_3$ (Ia) Figure 2 111.8 MHz ¹¹B NMR spectra of: - a) 4,5,6,7,11-D₅-(Ia) b) 6-Ph-(Ia) - c) 9,12-Br₂-(Ia) - d) 3,4,7-D₃-(Ia) e) 6,10-H₂-(Ia) SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) | REPORT DOCUMENTATION PAGE | READ INSTRUCTIONS BEFORE COMPLETING FORM | | | | |---|---|--|--|--| | 1. REFORT NUMBER 2. GOVT ACCESSION NO. | | | | | | Technical Report 107 | 1 | | | | | "A llB Study of the <u>Closo</u> -hydridorhodacarborane 3,3
[(C ₂ H ₅) ₃ P] ₂ -3-H-3,1, 2-Rh C ₂ B ₉ H ₁ 1(Ia) Prepared in sit | 5. TYPE OF REPORT & PERIOD COVERED Interim | | | | | from 3,3-(Ph ₃ P) ₂ -3-Y-3,1,2-RhC ₂ B ₉ H ₁₁ (I)" | 6. PERFORMING ORG. REPORT NUMBER | | | | | 7. AUTHOR(a) | 8. CONTRACT OR GRANT NUMBER(*) | | | | | W. C. Kalb, C. W. Kreimendahl, D. C. Busby, and
M. F. Hawthorne | N00014-76-C-0390 | | | | | 9. PERFORMING ORGANIZATION NAME AND ADDRESS The University of California | 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS | | | | | Department of Chemistry | NR 053-608 | | | | | Los Angeles, California 90024 | NR 033-000 | | | | | 11. CONTROLLING OFFICE NAME AND ADDRESS | 12. REPORT DATE | | | | | Chemistry Branch | January 22, 1980 | | | | | Office of Naval Research | 13. NUMBER OF PAGES | | | | | Washington, D.C. 20360 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) | 12 (incl. figs.) 15. SECURITY CLASS. (of this report) | | | | | | Unclassified | | | | | l | 15a. DECLASSIFICATION/DOWNGRADING | | | | | 16. DISTRIBUTION STATEMENT (of this Report) | SCHEDULE | | | | | Approved for public release; distribution unlimited. | | | | | | 17. DISTRIBUTION STATEMENT (of the abstract antered in Block 20, if different from | n Report) | | | | | | | | | | | 18. SUPPLEMENTARY NOTES | | | | | | | | | | | | 19. KEY WORDS (Continue on reverse elde if necessary and identify by block number) | | | | | | Carborane Nuclear Magnetic Resonance (N
Metallocarborane Rhodacarborane
Boron | IMR) | | | | | A ARTHUR (Continue on reverse side if necessary and identify by block number) | | | | | | A complete assignment of the TB NMR spectrum (11 3-H-3,1,2-RhC ₂ BgH ₁](Ia) is proposed on the basis of specifically deuterated derivatives of I, and from 3 3,1,2-RhC ₂ BgHg and 6-Ph-3,3-(Ph ₃ P) ₂ -3-H-3,1,2-RhC ₂ Bg[(C ₂ H ₅) ₃ P] ₂ -3-H-3,1,2-RhC ₂ BgH ₁] in tetrahydrofuran cof relative intensity 1:1:2:2:3 (reading upfield) wh B(8), B(9,12), B(4,7), B(6) and B(5,11), respectivel | 3,3-(Ph3P)2-3-H-9,12-(Br)2-
9H10. The TIB NMR of 3,3-
consists of five resonances | | | | | | | | | | APPENDIX ## TECHNICAL REPORT DISTRIBUTION LIST, GEN | | No.
Coples | | No.
Copies | |--|---------------|---|---------------| | Office of Naval Research | | U.S. Army Research Office | | | Attn: Code 472 | | Attn: CRD-AA-IP | | | 800 North Quincy Street | | P.O. Box 1211 | | | Arlington, Virginia 22217 | 2 | Research Triangle Park, N.C. 27709 | 1 | | ONR Branch Office | | Naval Ocean Systems Center | | | Attn: Dr. George Sandoz | • | Attn: Mr. Joe McCartney | | | 536 S. Clark Street | | San Diego, California 92152 | 1 | | Chicago, Illinois 60605 | 1 | Nerel Hannes Control | | | OWN Promote Office | | Naval Weapons Center | | | ONR Branch Office | | Attn: Dr. A. B. Amster, | | | Attn: Scientific Dept. | | Chemistry Division China Lake, California 93555 | 1 | | 715 Broadway
New York, New York 10003 | 1 | Unite Lake, California 93333 | • | | new lock, new lock 10003 | • | Naval Civil Engineering Laboratory | | | ONR Branch Office | | Attn: Dr. R. W. Drisko | | | 1030 East Green Street | | Port Hueneme, California 93401 | i | | Pasadena, California 91106 | 1 | Tota macheme, odilioidia /jaoi | • | | 10000000, 0022201010 71200 | • | Department of Physics & Chemistry | | | ONR Branch Office | | Naval Postgraduate School | | | Attn: Dr. L. H. Peebles | | Monterey, California 93940 | 1 | | Building 114, Section D | | ,, | | | 666 Summer Street | | Dr. A. L. Slafkosky | | | Boston, Massachusetts 02210 | 1 | Scientific Advisor | | | • | | Commandant of the Marine Corps | | | Director, Naval Research Laboratory | | (Code RD-1) | _ | | Attn: Code 6100 | _ | Washington, D.C. 20380 | 1 | | Washington, D.C. 20390 | 1 | Affiles of New J. B. et al. | | | | | Office of Naval Research | | | The Assistant Secretary | | Attn: Dr. Richard S. Miller | | | of the Navy (R,E&S) | | 800 N. Quincy Street Arlington, Virginia 22217 | 1 | | Department of the Navy | | Ariington, virginia 2221/ | • | | Room 4E736, Pentagon | 1 | Naval Ship Research and Development | | | Washington, D.C. 20350 | 1 | Center | | | Commander, Naval Air Systems Command | | Attn: Dr. G. Bosmajian, Applied | | | Attn: Code 310C (H. Rosenwasser) | | Chemistry Division | _ | | Department of the Navy | | Annapolis, Maryland 21401 | 1 | | Washington, D.C. 20360 | 1 | | | | • | | Naval Ocean Systems Center | • | | Defense Documentation Center | | Attn: Dr. S. Yamamoto, Marine | | | Building 5, Cameron Station | • • | Sciences Division | , . | | Alexandria, Virginia 22314 | 12 | San Diego, California 91232 | 1 | | Dr. Fred Saalfeld | | Mr. John Boyle | | | Chemistry Division | | Materials Branch | • | | Naval Research Laboratory | | Naval Ship Engineering Center | | | Washington, D.C. 20375 | 1 | Philadelphia, Pennsylvania 19112 | 1 | 472:GAN:716:tam 78u472-608 ### TECHNICAL REPORT DISTRIBUTION LIST, GEN No. Copies Dr. Rudolph J. Marcus Office of Naval Research Scientific Liaison Group American Embassy APO San Francisco 96503 1 Mr. James Kelley DTNSRDC Code 2803 Annapolis, Maryland 21402 1 ## TECHNICAL REPORT DISTRIBUTION LIST, 053 | | No.
Copies | · | No.
Copies | |---|---------------|---|---------------| | Dr. R. N. Grimes University of Virginia | | Dr. M. H. Chisholm Department of Chemistry | . : | | Department of Chemistry Charlottesville, Virginia 22901 | 1 | Indiana University
Bloomington, Indiana 47401 | 1 | | Dr. M. Tsutsui
Texas A&M University | | Dr. B. Foxman | | | Department of Chemistry | | Brandeis University | , | | College Station, Texas 77843 | 1 | Department of Chemistry Waltham, Massachusetts 02154 | 1" | | | | Dr. T. Marks | | | • | | Northwestern University | | | | | Department of Chemistry Evanston, Illinois 60201 | 1 | | Dr. D. B. Brown | | Pr. O Conferen | | | University of Vermont | | Dr. G. Geoffrey Pennsylvania State University | | | Department of Chemistry Burlington, Vermont 05401 | 1 | Department of Chemistry | | | Dullangeon, resurne | • | University Park, Pennsylvania 16802 | 1 | | Dr. W. B. Fox | | | | | Naval Research Laboratory Chemistry Division | | Dr. J. Zuckerman University of Oklahoma | | | Chemistry Division Code 6130 | | University of Oklahoma Department of Chemistry | | | Washington, D.C. 20375 | 1 | Norman, Oklahoma 73019 | 1 | | Dr. J. Adcock
University of Tennessee | | Professor O. T. Beachley | | | Department of Chemistry | | Department of Chemistry | | | Knoxville, Tennessee 37916 | 1 | State University of New York
Buffalo, New York 14214 | 1 | | Dr. A. Cowley
University of Texas | | Professor P. S. Skell | ŧ | | Department of Chemistry | | Department of Chemistry | | | Austin, Texas 78712 | 1 | The Pennsylvania State University University Park, Pennsylvania 16802 | 1 | | Dr. W. Hatfield | | Professor K. M. Nicholas | | | University of North Carolina Department of Chemistry | | Department of Chemistry | | | Chapel Hill, North Carolina 27514 | 1 | Boston College
Chestnut Hill, Massachusetts 02167 | 1 | | Dr. D. Seyferth | | Professor R. Neilson | | | Massachusetts Institute of
Technology | | Department of Chemistry | , | | Department of Chemistry | | Texas Christian University | • | | Cambridge, Massachusetts 02139 | 1 | Fort Worth, Texas 76129 | I, | | Professor H. Abrahamson | | Professor M. Newcomb
Texas A&M University | : | | University of Oklahoma | | Department of Chemistry | • | | Department of Chemistry
Norman, Oklahoma 73019 | 1 | College Station, Texas 77843 | 1 |